Hierarchy of random deterministic chaotic maps with an invariant measure

نویسنده

  • M. A. Jafarizadeh
چکیده

Hierarchy of one and many-parameter families of random trigonometric chaotic maps and one-parameter random elliptic chaotic maps of cn type with an invariant measure have been introduced. Using the invariant measure (Sinai-Ruelle-Bowen measure), the Kolmogrov-Sinai entropy of the random chaotic maps have been calculated analytically, where the numerical simulations support the results .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hierarchy of Chaotic Maps with an Invariant Measure and their Compositions

We give a hierarchy of many-parameter families of maps of the interval [0, 1] with an invariant measure and using the measure, we calculate Kolmogorov–Sinai entropy of these maps analytically. In contrary to the usual one-dimensional maps these maps do not possess period doubling or period-n-tupling cascade bifurcation to chaos, but they have single fixed point attractor at certain region of pa...

متن کامل

Limit Theorems for Hyperbolic Systems

One of the major discoveries of the 20th century mathematics is the possibility of random behavior of deterministic systems. There is a hierarchy of chaotic properties for a dynamical systems but one of the strongest is when the smooth observables satisfy the same limit theorems as independent (or Markov related) random variables. In my lectures I will discuss how to prove limit theorems for hy...

متن کامل

Hierarchy of piecewise non - linear maps with non - ergodicity behavior

We study the dynamics of hierarchy of piecewise maps generated by one-parameter families of trigonometric chaotic maps and one-parameter families of elliptic chaotic maps of cn and sn types, in detail. We calculate the Lyapunov exponent and Kolmogorov-Sinai entropy of the these maps with respect to control parameter. Non-ergodicity of these piecewise maps is proven analytically and investigated...

متن کامل

Hierarchy of one and many - parameter families of elliptic chaotic maps of cn and sn types

We present hierarchy of one and many-parameter families of elliptic chaotic maps of cn and sn types at the interval [0, 1]. It is proved that for small values of k the parameter of the elliptic function, these maps are topologically conjugate to the maps of references [1, 2], where using this we have been able to obtain the invariant measure of these maps for small k and thereof it is shown tha...

متن کامل

A.c.i.m for Random Intermittent Maps : Existence, Uniqueness and Stochastic Stability

We study a random map T which consists of intermittent maps {Tk}k=1 and probability distribution {pk,ε(x)} K k=1. We prove existence of a unique absolutely continuous invariant measure (ACIM) for the random map T . Moreover, we show that, as ε goes to zero, the invariant density of the random system T converges in the L1-norm to the invariant density of the deterministic intermittent map T1. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008